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Abstract. The mathematical structure of quantum mechanics is determined by two algorithms:
quantization algorithm (QUAN) which says that an observed value of an observableQ is one of
the eigenvaluesq of the corresponding physical operatorQ̂, and the statistical algorithm (STAT)
which says that the probability for the observed physical quantityvm(Q) to be q is |〈q|ψ〉|2.
From these two algorithms we can derive the principle of statistical function composition (SFC),
Prob(vm(f (Q)) = r|ψ) = Prob(vm(Q) = f−1(r)|ψ). With the assumption of the principle of
function composition (FC) that the algebraic relations between observables of a given physical
system are identical with the algebraic relations between the values possessed by the system before
the observation is made, it could be explained why the result of measurement obeys SFC. According
to Bell–KS theorem, FC is not compatible with quantum theory. We analyse, in this paper, the
incompatibility of FC with quantum theory in detail, focusing on the analysis of Redhead (1989
Incompleteness, Nonlocality and Realism(Oxford: Oxford University Press)). Redhead assumes
the faithful measurement principle (FM) in order to construct FC. However, we show, that FC can
be derived without the help of FM.

1. Introduction

Many physical phenomena force physicists to accept the following two facts related to quantum
physics:

• QF1: observed physical quantities are not allowed to be arbitrary but are restricted
somehow.
• QF2: we cannot, in general, predict the result of measurement but can predict only the

probability about the result of measurement.

When a physical system shows these two aspects, we describe this system through quantum
theory which can be summarized by the following two algorithms, quantization algorithm
(QUAN) and statistical algorithm (STAT) [1]:

• QUAN: a measured quantity of a physical observableQ is one of the eigenvalues of the
corresponding operator̂Q.
• STAT:when a physical system is in a state|ψ〉, the probability for the measured quantity

to beq is |〈q|ψ〉|2.

However, we may require, the so-called minimal realism [2] in the measurement theory:

• REALISM:the measured quantity of a physical system is based on the properties of the
system possessed before measurement is made.

0305-4470/99/173117+09$19.50 © 1999 IOP Publishing Ltd 3117



3118 M S Kim et al

The programme to accomodate this REALISM into quantum theory is called the hidden-
variables programme. However, Bell [3] and Kochen and Specker [4] showed that
accomodation of REALISM into quantum theory is impossible, which is usually called the
no-hidden-variables theorem. We now analyse the derivation of the Bell–KS theorem in detail
and find out the problem in the hidden-variables programme. For this purpose, we follow the
method introduced by Peres [5], Mermin [6–8] and Redhead [1].

2. The principle of statistical function composition

The wavefunction in a Schrödinger equation does not faithfully describe the physical properties
of an individual particle. The conventional interpretation of quantum theory, therefore, does
not allow us to assign precise physical quantities before measurement. On the other hand,
according to the hidden-variables interpretation, we assume that there are hidden variables
which determine all the physical quantities of individual particles. The hidden-variables
programme, therefore, embodies quantum theory using the hidden variableλ. Are there
any contradictions between quantum theory and the assumption of the existence of a hidden
variable?

It is important whether or not there is a hidden variable. If there is a possibility of the
existence of the hidden variable, the existing quantum theory is incomplete in some sense as
discussed by Einsteinet al [9]. However, if the assumption that there exists a hidden variable
is not compatible with quantum theory, the hidden-variables programme cannot be realized.
We analyse one of the no-hidden-variables theorems, Bell–KS theorem, and then find out what
this theorem requires on the hidden-variables theory. For this purpose, we first investigate
the mathematical theorem induced by the algorithms; quantization algorithm and statistical
algorithm.

Let Q̂ be a Hermitian operator defined on anN -dimensional Hilbert space. Consider its
eigenstate|qi〉 and eigenvalueqi wherei runs from 1 toN . When all of theqi are different, we
sayQ̂ is a nondegenerate or maximal operator. Two eigenstates corresponding to two different
eigenvalues are orthogonal. Therefore, we get〈qi |qj 〉 = δij . Introducing projection operators
P̂i = |qi〉〈qi |, Q̂ can be expressed aŝQ = ∑i qi P̂i . However, usingP̂ ni = P̂i , a polynomial
of Q̂ can be written asf (Q̂) =∑i f (qi)P̂i . We now generalize this to an arbitrary function
of the operator and define a functionχqi (q) = δqiq . For this function, we get

P̂i = χqi (Q̂). (1)

According to the statistical algorithm, the probability forvm(Q), the measured value of the
observableQ to beqi , when a particle is in a state|ψ〉, is

Prob(vm(Q) = qi |ψ) = |〈qi |ψ〉|2 = 〈qi |ψ〉〈ψ |qi〉
= tr({|qi〉〈qi |}{|ψ〉〈ψ |}) = tr(P̂iρ) = tr(χqi (Q̂)ρ) (2)

whereρ is the state operator equal to|ψ〉〈ψ |. From the relationχy(f (x)) = χf −1(y)(x) and
using the equation (2), we get

Prob(vm(f (Q)) = r|ψ) = tr(χr(f (Q̂))ρ)

= tr(χf −1(r)(Q̂)ρ) = Prob(vm(Q) = f −1(r)|ψ) (3)

where the functionf is taken to have the inverse, orf −1(r) = {x|f (x) = r}. As a result, we
obtain the statistical functional composition principle (SFC),

Prob(vm(f (Q)) = r|ψ) = Prob(vm(Q) = f −1(r)|ψ). (4)
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This SFC is the quantum mechanical restriction which should be satisfied by the distribution
of measured values of the physical quantities. Now, how do we explain the fact that quantum
phenomena requires SFC?

3. Hidden-variables theory and the functional composition principle

Let us investigate the way to explain this SFC in the hidden-variables theory. According to
quantum theory, for any Hermitian operatorQ̂ there is a corresponding observableQ. First,
hidden-variables theory should assume the following:

• HV1: a particle hasvp(Q) as the possessed value of a physical observableQ before the
measurement ofQ is fulfilled.

Therefore,vp(Q) or vp(Q; |ψ〉, λ) is a real number, determined by the state of an individual
particle described by|ψ〉 andλ, whereλ denotes a hidden variable. According to the hidden-
variables interpretation, a measured valuevm(Q) is somehow related to the possessed value
vp(Q). Then, what can be said about the relation between the measured valuevm(Q) and
the possessed valuevp(Q)? For that purpose, first we need to define the statistics ofvp(Q).
The statistics ofvm(Q) can be identified with the distribution of the results of measurements.
Then the statistics ofvp(Q) can be defined as the distribution of the possessed values of the
members of an ensemble. Here the ensemble is represented by|ψE〉 which corresponds to
the wavefunction|ψ〉 and there is a one-to-one correspondence between|ψE〉 and|ψ〉. The
probability that the possessed value isq is the number of elements in ensemble withq asvp(Q)
divided by the total number of elements in the ensemble|ψE〉. For example, if 25% of the
elements in the ensemble haveq as the possessed value ofQ, then Prob(vp(Q) = q|ψE) is
equal to1

4.
In any case, according to QF2, quantum theory can definitely predict the statistics of

the results of measurements. The Schrödinger equation gives the calulation of the statistics,
which is what STAT says. The statement that quantum theory can predict the statistics ofvm(Q)

means that we physicists can obtain the statistics ofvm(Q) through calulation on paper without
performing any experiment in the laboratory. In principle, the value of Prob(vm(Q) = q|ψ)
obtained by experiment is equal to|〈q|ψ〉|2 obtained by calculation of the Schrödinger equation.
Therefore, the statistics ofvm(Q) will not change in spite of influence of the measurement,
and the statistics ofvm(Q) can be defined before the measurement. If so, the statistics of
vm(Q) should be expressed in terms of possessed values, since all information of the system
before measurement is embodied in possessed values. Thus, the hidden-variables theorist
must assume that the statistics of a possessed value defined independently of measurement is
identical to the statistics of a measured value. Thus this hidden-variables interpreter’s point of
view can be summarized as follows:

• HV2: the statistics for the observed results after measurement can be identified with the
statistics of the possessed values in an ensemble, or Prob(vm(Q) = q|ψ) = Prob(vp(Q) =
q|ψE).

Note that the assumption of HV2 does not force us to accept the following principle: the
measured value is equal to the possessed value, orvm(Q) = vp(Q). This principle is named
the principle of faithful measurement (FM). This requirement of FM is proper, in some sense,
because by measurement we mean to observe the properties of a particle (or a system) which
were there before the measurement. From the realist’s point of view, a particle has already
had some properties before the measurement. Even though no measurement is performed,
such properties are still there in reality. The measurement just plays the role of visualizing the
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properties of a given particle with no disturbances. However, we know that this requirement
of FM is too strict. One of the objections to FM is as follows. Since quantum theory cannot
predict the physical properties of a particular particle definitely, it is necessary to perform
measurement in order to know the properties. But in the theory there is no the guarantee that
the process of measurement does not disturb the properties of the particle. Therefore we will
try not to commit to FM.

A case that HV2 holds without FM may be as follows. Suppose the system is in eigenstate
of z-component of the spin. In this case, 50% of the ensemble has1

2 and another 50% has
− 1

2 as the possessed value ofsx . But as results of experiment, it may happen that only 90%
of elements withvp(sx) = 1

2 are measured asvm(sx) = 1
2, eventually the rest 10% of results

beingvm(sx) = 1
2 results from the elements withvp(sx) = − 1

2. This is the case that HV2
holds without FM.

HV2 implies that for any observableQ if Prob(vm(Q) = q|ψ) = 0, then Prob(vp(Q) =
q|ψE) = 0. Therefore, if we assume that when the probability for the possessed value to be
q is zero,q cannot be a possessed value of the observableQ, and we can obtain the following
VALUE rule. If Prob(vm(Q) = q|ψ) = 0, thenvp(Q) cannot beq. This VALUE rule,
however, holds only for the discrete spectral cases. For the case of a continuous spectrum we
have to consider instead the probability density of probability itself. From VALUE we can
derive the SPECTRUM rule that a possessed value of a observableQ should be one of the
eigenvalues of the operator̂Q. Now we further assume the following functional composition
principle (FC) in addition to HV2:

• FC: the algebraic relations between observables are imposed exactly in the same way on
the relations between the possessed values of the corresponding observables. In particular,
vp(f (Q)) = f (vp(Q)) holds for anyQ.

Using FC and HV2, we can derive the following statistical functional composition principle
(SFC):

Prob(vm(f (Q)) = r|ψ) = Prob(vp(f (Q)) = r|ψE)

= Prob(f (vp(Q)) = r|ψE)

= Prob(vp(Q) = f −1(r)|ψE) = Prob(vm(Q) = f −1(r)|ψ). (5)

Therefore, the hidden-variables theory accepting FC automatically allows SFC. The hidden-
variables interpretation, that a particle carries possessed values in reality, provides a good
explanation for the quantum mechanical experimental results when equipped with the
assumption that the algebraic relations between the possessed values determine the quantum
mechanical structure. However, FC does not come automatically from SFC, and consequently
we do not know whether FC is compatible with the quantum mechanics. We now consider
this question and will see that FC is not compatible with quantum mechanics.

4. Bell–KS theorem

What would happen if we require FC as a constraint on the possessed values? The answer to
this question is the Bell–KS theorem [3, 4]. The conclusion of this theorem is that FC is not
compatible with quantum mechanics. In order to show this conclusion, we need the following
SUM rule. LetA andB be observables corresponding to operatorsÂ and B̂ respectively,
defined on anN -dimensional Hilbert space. If̂A and B̂ commute, for any state vector the
possessed value of an observableA + B is equal to the sum of the possessed value ofA and
that ofB. That is,

[Â, B̂] = 0→ vp(A +B) = vp(A) + vp(B). (6)
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Before proving SUM, we need to derive a lemma.

Lemma. If two operatorsÂ andB̂ commute, there exist functionsf , g and a nondegenerate
operatorĈ satisfyingÂ = f (Ĉ), B̂ = g(Ĉ).

Proof. If two operatorsÂ andB̂ commute, their eigenstates can be simultaneously defined.
We denote them by|a, b〉 satisfyingÂ|a, b〉 = a|a, b〉 andB̂|a, b〉 = b|a, b〉, and we assume
they are orthonormalized, for orthonormalization is always possible. They form a complete
set for the Hilbert space and can serve as a basis. We can express the two operatorsÂ and
B̂ as follows. Â = ∑

a a|a, b〉〈a, b| andB̂ = ∑
b b|a, b〉〈a, b|. It is clear that both of the

operatorsÂ andB̂ are diagonalized at the same time in this basis. In the matrix form,Â is
represented by a diagonal matrix with itsN eigenvaluesa1, a2, . . . , aN as diagonal elements,
and likewiseB̂ is represented by a diagonal matrix with itsN eigenvaluesb1, b2, . . . , bN as
diagonal elements. Let̂C be an operator represented by a diagonal matrix withN distinct
diagonal elementsc1, c2, . . . , cN . It is obvious that there exists a functionf satisfying
f (ci) = ai , wherei = 1, 2, . . . , N . An obvious choice forf is anN th degree polynomial
with suitable coefficients. Similarly we can also find a functiong satisfyingg(ci) = bi ,where
i = 1, 2, . . . , N . These two functions, defined originally as mappings from real numbers to
real numbers, can be considered as mappings from the set ofN × N matrices to the set of
N ×N matrices. In this sense, we getÂ = f (Ĉ), B̂ = g(Ĉ). This proves the lemma. �

We now proceed to prove SUM using this lemma. For a given pair of commuting operators
Â and B̂, we define a functionh as the sum off andg both of which satisfyÂ = f (Ĉ),
B̂ = g(Ĉ). With the assumption of FC, we finally get SUM:

vp(A +B) = vp(f (C) + g(C)) = vp(h(C)) = h(vp(C))
= f (vp(C)) + g(vp(C)) = vp(f (C)) + vp(g(C)) = vp(A) + vp(B) (7)

wheref (C), g(C) andh(C) are the observables corresponding to operatorsf (Ĉ), g(Ĉ) and
h(Ĉ). By taking exactly the same procedure as in the proof of SUM, we can prove the
PRODUCT rule. This rule for the possessed values of two commuting operatorsÂ andB̂ is
given as follows:

[Â, B̂] = 0→ vp(AB) = vp(A)vp(B). (8)

In summary, the assumption of FC automatically induces SUM and PRODUCT.
Now we introduce the Peres [5] and Mermin version [6, 8] of the proof that FC is not

compatible with quantum physics. They used SUM and PRODUCT to prove it. More precisely
speaking, they used two rules to derive a result which contradicts quantum mechanics. The
proof is as follows. We consider a system composed of two spin-half particles in singlet state.
Each particle carries a spin denoted bysim, where indexi is for the identification of the particle
andm is for the component of spin. For example,s1y indicates they component of the spin
of particle one. The eigenvalues ofsim are± 1

2 for all i andm. In the proof, we useσim = 2sim
for the sake of simplicity. So, the eigenvalues ofσim are±1. We can think ofσim as Pauli
matrices for eachi. Because the system is in singlet state, the system is in the eigenstate of
σ1x + σ2x with eigenvalue zero. According to SPECTRUM in section 3, the possessed value
vp(σ1x + σ2x) is also zero. Using SUM, we getvp(σ2x) = −vp(σ1x) and similar relations for
theyth component and thezth component:vp(σ2y) = −vp(σ1y), vp(σ2z) = −vp(σ1z).

Now we consider two operators,σ1xσ2y andσ1yσ2x . The two operators commute, as can
easily be checked. We also know that [σ1x, σ1y ] = 0 and [σ1y, σ2x ] = 0. Using PRODUCT
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we get the following:

vp(σ1xσ2yσ1yσ2x) = vp(σ1xσ2y)vp(σ1yσ2x)

= vp(σ1x)vp(σ2y)vp(σ1y)vp(σ2x) = vp(σ1x)
2vp(σ1y)

2 = 1. (9)

We also haveσixσiy =−σiyσix = iσiz for eachi. And we haveσ1xσ2yσ1yσ2x = σ1xσ1yσ2yσ2x =
σ1zσ2z and this gives us another relation:

vp(σ1xσ2yσ1yσ2x) = vp(σ1zσ2z)

= vp(σ1z)vp(σ2z) = −1. (10)

Obviously this contradicts equation (9). This contradiction arises because SUM and
PRODUCT are not compatible with quantum mechanics, which, in turn, means that FC is
not compatible with quantum mechanics. In the next section, we further analyse how FC is
not compatible with quantum mechanics.

5. Analysis of the principle of function composition

In addition to FC, if we accommodate FM thatvm(Q) = vp(Q) for any observableQ, we can
easily obtain the following:

vm(f (Q)) = vp(f (Q)) = f (vp(Q)) = f (vm(Q)). (11)

Intuitively, this result is quite acceptable on the ground thatQ andf (Q) can be measured
simultaneously. But for the same reason that FC is not compatible with quantum mechanics,
equation (11) also could not be accepted quantum mechanically. If FC implicitly contains FM
as was assumed by Redhead [1], Bell–KS theorem forces us to discard FM. Then the hidden-
variables interpretation should be carried out without assuming FM. But after discarding FM,
what remains in the hidden-variables interpretation? To see this, we now analyse FC in different
manner to Redhead [1].

According to HV1, a particle has possessed valuesvp(Q) for an arbitrary observable
Q. We can construct new numberf (vp(Q)) for any invertible functionf . The statistics
of these numbers is determined solely by the statistics ofvp(Q). As f (vp(Q)) = r and
vp(Q) = f −1(r) are equivalent statements, we have

Prob(f (vp(Q)) = r|ψE) = Prob(vp(f (Q)) = r|ψE) (12)

using HV2 and SFC. Here we see that the statistics forf (vp(Q)) is identical to the statistics
for vp(f (Q)), wherevp(f (Q)) is the possessed value of the observablef (Q) corresponding
to f (Q̂). In other words, the probabilistic distribution forf (vp(Q)) constructed byvp(Q)
follows the statistical algorithm of the new operatorf (Q̂). Thus we make the following
assumption:

• REALITY: if there exist real numbers satisfying probability distribution defined by the
statistical algorithm of some Hermitian operator, there also exists a physical observable
related to these numbers.

If this REALITY is accepted, there exists an observablef̃ (Q′) related with the numbers
f (vp(Q)). The statistical algorithm of the observablẽf (Q′) is identical with that of
the observablef (Q) corresponding to the operatorf (Q̂). Now let us introduce another
assumption called the correspondence rule (CR) as follows:

• CR: there is a one-to-one correspondence between an Hermitian operatorQ̂ and an
observableQ.
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If this CR assumption is accepted, there exists only one observable corresponding to the
operatorf (Q̂). Thusf̃ (Q′) = f (Q). And since the possessed values of the same observables
are same, the possessed values off (Q) are equal to the possessed values off̃ (Q′). That is,
vp(f (Q)) = f (vp(Q)), sincevp(f̃ (Q′)) = f (vp(Q)) by construction off̃ (Q′). Therefore,
we obtain the following FC:

vp(f (Q)) = f (vp(Q)).
According to the preceding analysis, FC can be derived from the following assumptions:

HV1 ∧ HV2 ∧ REALITY ∧ CR→ FC.

On the other hand, the fact that FC leads to contradiction implies that one should be discarding
at least one of HV1, HV2, REALITY and CR. According to Bohr’s point of view, or the
Copenhagen interpretation, as observables are defined only by measurement, it is meaningless
to suppose that a particle possesses certain numbers related with the observableQ before
the measurement is made, so HV1 can be discarded. However, we can also discard some
assumptions other than HV1. In fact, there exists a successful interpretation consistent with
HV1, known as the de Broglie–Bohm interpretation [10, 11]. It should be noted that it is
impossible to keep REALISM without the assumption HV1.

6. Contextuality

If FC is a condition which cannot be accepted quantum mechanically, the following conclusion
can be drawn. Although operatorŝQ andÂ are related with each other througĥQ = f (Â),
vp(Q) is not uniquely determined byvp(A), i.e., vp(Q) 6= f (vp(A)). This can be easily
understood as follows. If for two commuting operatorsÂ andB̂, there exist two functions
f , g and a nondegerate operatorĈ satisfyingÂ = f (Ĉ) and B̂ = g(Ĉ). If f is a one-
to-one function,Â is nondegenerate and vice versa. Thus for nondegerate operatorÂ, f
is a one-to-one function and has the inverse, which leads toĈ = f −1(Â). Consequently,
B̂ = g(Ĉ) = g ◦ f −1(Â), implying thatB̂ is expressed in terms of nondegenerate operatorÂ.

This means that an arbitrary operatorQ̂ can be expressed in terms of a nondegenerate
operator commuting witĥQ. But we may have two nondegenerate operators,Â andÂ′ such
that Q̂ = f (Â) = g(Â′). If Q̂ is also nondegenerate then̂A = f −1(Q̂) = f −1 ◦ g(Â′)
and thusÂÂ′ = Â′Â. In fact, FC does not cause any trouble whenQ̂ is nondegenerate
[12]. However, ifQ̂ is degenerate, we can find noncommuting nondegenerate operatorsÂ

and Â′ such thatQ̂ = f (Â) = g(Â′). In this casevp(Q) = vp(f (A)) = f (vp(A)) and
vp(Q) = vp(g(A

′)) = g(vp(A
′)) are simultaneously satisfied by FC. Consequently, FC

requiresf (vp(A)) = g(vp(A
′)). However, for a degenerate operatorQ̂, Â andÂ′ may not

commute with each other. If so, sinceA andA′ cannot be measured simultaneously, we cannot
claim thatf (vp(A)) andg(vp(A′)) represent the possessed values of same observable of given
ensemble member particle. In other words, there is no guarantee thatvp(Q) in terms ofvp(A)
andvp(Q) in terms ofvp(A′) have the same value, which means that the possessed value of
the degenerate observable can be different values on occasion.

The fact that the possessed values of an observable are not uniquely assigned may imply
that the possessed value itself cannot be defined. This forces one to discard HV1. If so, the
measured values vary with context of measuring apparatus in which the particle experiences,
rather than determined by the possessed values. This philosophy of observables may be called
epistemological contextualism (EC), which is supported by the Copenhagen school. According
to this interpretation, the observableQ is a relational property defined by the measuring process.
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However, if we want to support REALISM by adhering to HV1, we should discard either
REALITY or CR. First, we discuss the validity of REALITY, which is open to doubt because
we cannot claim that there exisits an observablef (A) corresponding to the defined number
f (vp(A)). Consequently, the possessed valuesvp(Q) of an observableQ can be different from
the valuesf (vp(A)) constructed by the given functionf . Namely, we cannot say that there
necessarily exists an observable which hasf (vp(A)) as possessed values and corresponds to
operatorf (Â). Rather,vp(Q) of Q may happen to be equal to a certain valueg(vp(A′))
for some functiong andvp(A′) of another observableA′. Therefore, a true possessed value
of observableQ may be different from a fake valuef (vp(A)) [13]. But it is very hard to
understand that althoughQ andA are observables and̂Q = f (Â), the quantityf (A)may not
be an observable.

So, alternatively, let us discard CR. We now suppose that the relationQ̂ = f (Â) = g(Â′)
holds, whereQ̂ is any degenerate operator,Â andÂ′ are some noncommuting nondegenerate
operators. If we discard CR, for nondegenerate operatorsÂ and Â′, there can be two
observablesQA, QA′ corresponding to an operator̂Q. Therefore, the physical observables
corresponding to one mathematical operator can be many, and have different possessed values
in different contexts. Consequently,vp(QA) 6= vp(QA′) in general [14]. Let us call this
philosophy of observables the ontological contextualism (OC). Now the observables are
described by the relation between the corresponding operators and appropriate nondegenerate
operators. Consequently, the context for making an observable a specific physical quantity is
the context of measurement of a nondegenerate observable. In the experimental arrangement
for the measurement ofA, the observable corresponding tôQ isQA, which implies that the
measurement in this context givesvp(QA) = f (vp(A)) as the possessed value. The same
applies toA′. But the fact that many observables correspond to one operator means that
the structure of observables is more complicated than the mathematical structure of quantum
mechanics. In other words, OC introduces too many observables into quantum mechanics.
However, we understand the importance of observables corresponding to nondegenerate
operators in the light of OC.

7. Conclusion

According to QUAN and STAT, possible values of an observable are determined by the principle
of SFC. Since SFC can be derived from the principle of FC, the hidden-variables interpretation
based on the assumption of FC gives a proper explanation for how the statistics of experimental
results satisfies SFC. However, Bell–KS theorem states that the hidden-variables interpretation
based on FC is incompatible with QUAN and STAT. We, without assuming the FM principle,
tried to analyse FC to clarify why FC is incompatible with quantum mechanics. FC requires
the following: (i) the validity of defining the possessed values (HV1); (ii) the statistical identity
of the possessed values and the measured values (HV2); (iii) the one-to-one correspondence
between the operator and the observable (CR); and (iv) the reality of an observable related to
numbers obeying the statistical algorithm of a Hermitian operator (REALITY). Consequently,
Bell–KS theorem requires that, among HV1+HV2, CR and REALITY, there is at least one
that cannot be accepted to quantum mechanics. Therefore, the conclusion of Bell–KS theorem
is that at least one of the following statements should be adopted: (i) the possessed value
cannot be defined; (ii) there exists fake quantities; and (iii) there exist more observables than
Hermitian operators. The hidden-variables interpreters should choose either (ii) or (iii), in
order to support the minimal realism.

By analysing FC this way, we now understand why FM should be discarded. For instance,
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according to OC, measurement of an observable can have sense when the measuring context
for nondegenerate observable is specified. Thus we do not know which observable corresponds
to a given mathematical operator before the observable corresponding to the nondegenerate
operator is prescribed. In other words, the possessed value of the degenerate observable
generates after the context of measurement of the nondegenerate observable is specified.
Therefore, for a degenerate operator, the possessed values and the measured values of the
corresponding observable can be different.
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